THE NACTO URBAN STREET DESIGN GUIDE

SAN MATEO TRAINING

May 14, 2014

Application of the Guide on San Francisco Roadways

Two Recent Complete Street Projects

Polk St. (Civic Center)

Cesar Chavez

An Incomplete Street can feel like...

Cesar Chavez Street: 6 lane arterial

Result of Designing for Peak Hour*

Inefficient Use of Valuable Space One-Dimensional Design Encourages Speeding Unnecessarily Wide for Pedestrians

*Peak hour occurs ~2hrs/day, 5 days/week, or 6% of the time

Designing for Peak Motor Vehicle Flow

Cesar Chavez Streetscape Project

- Pedestrians
- Bicyclists
- Trucks
- Signal Design

- Schools, Parks Access
- Transit
- Local and Regional Traffic
- Accessibility (APS)
- Traffic Routing during Construction

Cesar Chavez - before project

Road Diet Concept

50,000+ veh/day – LOS F acceptable trade-off for benefits

Multi-Agency Effort

Cesar Chavez – before project

Six lanes, 53,000 veh/day

Cesar Chavez – after project

Road diet, bike lanes, landscaping, bulb outs, LED lights

Cesar Chavez: street or freeway on-ramp?

Cesar Chavez: before

Cesar Chavez: before

Cesar Chavez: after

Landscape median w turn pockets and ped refuges

Transit bulbs

Cesar Chavez at Mission and Capp

Awkward intersection, degraded pedestrian sidewalk space, long exposed street crossings

Cesar Chavez at Mission and Capp

Plaza, raised intersection, shared space, and bulb out under construction

Cesar Chavez at Mission and Capp

All with permeable pavement

STO

SFMTA Municipal Agency Cesar Chavez at York and Hampshire - before

Cut-through traffic, higher speed turns, ped xing

Cesar Chavez at York and Hampshire - after

Raised xwalk, choker/bulb out

Polk Street - before

Poor bike connectivity, challenging ped xings

Polk Street Bikeways - after

Widened green lanes with backin angled parking

Visible, connected, comfortable

Separated contraflow lane

Polk Street Contraflow Bike Lane

Improved Connectivity along One-Way Arterial

Polk Street – old ped xings

Scalloped corners, longer xings

Polk Street – new ped xings

Bulb outs, shorter xings

Thank You!

Contact: Mike Sallaberry, mike.sallaberry@sfmta.com

The Urban Street Design Guide

Street Types & Design Elements

March 14, 2014

Downtown 1-Way Street Downtown 2-Way Street Downtown Thoroughfare Neighborhood Main Street Neighborhood Street Yield Street Boulevard

NACTO vs. Functional Classification

NACTO Street Types	Functional Classification
Downtown Streets	Arterial, Collector, Local
Downtown Thoroughfare	Arterial, Collector
Neighborhood Main Street	Arterial, Collector
Boulevard	Arterial, Collector
Residential Boulevard	Arterial, Collector, Local
Transit Corridor	Arterial, Collector
Neighborhood Streets	Local
Shared Streets	Local
Alleys	Local

Context is Critical

Street design should both respond to and influence the desired character of the public realm.

Context/Land Use

Downtown 1-Way Street Downtown 2-Way Street Downtown Thoroughfare Neighborhood Main Street Neighborhood Street Yield Street Boulevard

Usage Characteristic/Mode

Downtown 1-Way Street Downtown 2-Way Street Downtown Thoroughfare Neighborhood Main Street Neighborhood Street Yield Street Boulevard

Size/Class/Configuration

Downtown 1-Way Street Downtown 2-Way Street Downtown Thoroughfare Neighborhood Main Street Neighborhood Street Yield Street Boulevard

SAN FRANCISCO STREETS From the Better Streets Plan

Parkways Park Edge Boulevards Ceremonial (Civic Streets) Commercial Throughways **Downtown Commercial** Downtown Residential Neighborhood Commercial **Residential Throughway** Mixed Use Industrial Shared Public Ways Paseo Alleys

Downtown 1-Way Street

Downtown 1-Way

Downtown 1-Way

9th Avenue Complete Street (2007-2008)

GOALS

- Higher quality
 experience for cyclists
 of all levels
- Secure and pleasant pedestrian experience
- Conflict-free loading and unloading
- Through vehicle movements accommodated
- Congestion-free surface transit

Credit: Mike Flynn

9th Avenue Complete Street (2007-2008)

Design Hour

A DAY IN THE LIFE OF A STREET

8:00 am

1:00 pm

MID-DAY Downtown pedestrian volumes reach their peak intensity at lunch hour. 8:00 pm

EVENING

Traffic volumes begin to dip in the evening, after rush hour, while pedestrian traffic in certain areas begins to rise.

9th Avenue Complete Street (2007-2008)

DESIGN CONSIDERATIONS

- Motorist-bicyclist turning conflicts (left hooks)
- Street sweeping & snow clearing
- Loading & unloading

- < 1,800 vph during peak hours
- 4 travel lanes = excess capacity
- Travel lanes comfortably accommodate 600 vph

Credit: Mike Flynn

9th Avenue Complete Street (2007-2008)

- Pedestrian crossings reduced by 25' (from 70')
- New trees & planting beds

- Separated bike path
- Bicycle signals
- Sufficient capacity for motorists
- One left turn banned

- Single-space meters → multi-space
- Some parking loss
- Bus service unchanged
 Credit: Mike Flynn

9th Avenue Complete Street (2007-2008)

9th Avenue Complete Street (2007-2008)

INTERIM

9th Avenue Complete Street (2007-2008)

RESULTS

- Cyclist injuries down 36%
- 46% fewer injuries to all users
- 43% fewer crashes with injuries
- Weekday bicycle volumes increased by 63%

Credit: Mike Flynn

9th Avenue Complete Street (2007-2008)

<u>RESULTS</u>

- 15% reduction in vehicle volume during peak hour
- During PM peak period, 14% of roadway users are cyclists
- 49% increase in retail sales between 23rd – 31st Sts, compared to 3% for borough and 26% for comparisons

Area Improvement Site	Baseline Quarterly Sales	∆ Sales Post-Improvement		
		1st Year	2nd Year	3rd Year
9th (23-31)	\$3,284,342	17%	47%	49%
Borough				
Manhattan	\$ 5,215,280,268	5%	-7%	3%
Neighborhood Comp	arisons			
Average	\$4,748,430	25%	27%	26%
8th (24-28)	\$1,217,927	15%	15%	13%
7th (16-23)	\$8,719,988	23%	23%	20%
10th (16-26)	\$4,307,375	37%	43%	44%

9th Avenue Complete Street (2007-2008)

Capital Build-Out Concept

Credit: Mike Flynn

1st & 2nd Avenues Select Bus Service (2010-2013)

BEFORE

1st & 2nd Avenues Select Bus Service (2010-2013)

INTERIM

1st & 2nd Avenues Select Bus Service (2010-2013)

1st & 2nd Avenues Select Bus Service (2010-2013)

CAPITAL

Neighborhood Slow Zone program (2011 –)

PROGRAM GOALS

- Community-based program to change driver behavior
- Lower incidence and severity of crashes
- Enhance quality of life by reducing cut-through traffic and traffic noise in residential neighborhoods

Neighborhood Slow Zone program (2011 –)

APPROACH

- Application-based, competitive selection
- Self-contained areas of mainly local streets with strong boundaries
- Use of low-cost, quick interim treatments

TOOLKIT

- Gateway treatments at entries
- Channelization markings to visually narrow roadway
- Speed humps at regular intervals

Neighborhood Slow Zone program (2011 –)

Neighborhood Slow Zone program (2011 –)

RESULTS (Claremont Slow Zone)

- Speeds reduced at 6 out of 7 locations with speed humps (10% decrease in 85th percentile speeds)
- Traffic volumes inside zone decreased by 13%
- Extremely popular program being doubled, with 15 projects in 2015
- 74 applications received from communities for 15 slots

Motor Vehicle Volumes E 172nd St, E 173rd St, Boone Ave, Bryant Ave, Freeman St, Hoe Ave, Home St, Jennings St, Longfellow Ave, Vyse Ave

Credit: Mike Flynn

Neighborhood Slow Zone program (2011 –)

POTENTIAL TOOLKIT for CAPITAL BUILD-OUT

- Gateway
- Raised Crossing/ Raised Intersection
- Pinchpoint
- Chicane
- Mini-Roundabout

NACTO

Boulevard

Allen & Pike Street Malls (2008-2013)

BEFORE

Allen & Pike Street Malls (2008-2013)

INTERIM

Allen & Pike Street Malls (2008-2013)

CAPITAL

Elements Used

- Protected Bike Lanes (Median)
- 10-ft. lanes
- Interim Public Plazas

Credit: NYC DOT

Lane Width

Lane width should be evaluated within the overall assemblage of the street.

Wider travel lanes are correlated with higher vehicle speeds.

Average Lane Width (feet converted from meters)

"As the width of the lane increased, the speed on the roadway increased... When lane widths are 1 m (3.3 ft) greater, speeds are predicted to be 15 km/h (9.4 mph) faster."

Chart source: Fitzpatrick, Kay, Paul Carlson, Marcus Brewer, and Mark Wooldridge. 2000. "Design Factors That Affect Driver Speed on Suburban Streets." *Transportation Research Record* 1751: 18–25. **Regression Line**

85th Percentile Speed of Traffic

Sidewalks: The City at Eye-Level

INTERIM DESIGN STRATEGIES

Activating the curb Parklets Temporary Street Closures Interim Public Plazas

INTERIM DESIGN STRATEGIES

	CONVENTIONAL PROJECT DEVELOPMENT	PHASED/INTERIM DESIGN STRATEGY
Year 1	Concept	Concept
	Plan/Outreach	Plan/Outreach
Year 2		Interim Installation
		Impacts Analysis
Year 3	Design	Design
Year 4		
Year 5	Construction	Construction

Image: SF Better Streets Plan

Pros & Cons

Pros

- Design in real time
- Realize project benefits now
- Evaluate and improve rather than spend then correct
- Build a constituency
- Build more, cheaper, faster

Cons

- Pilot projects can be removed
- Aesthetic quality often lower
- Potential absence of capital funds for improvement.
- Can look shabby if poorly maintained

Credit: University City District

1 Same

No

Interim Public Plazas – NYC Plaza Program

Credit: Mike King

David Vega-Barachowitz

Director Designing Cities Initiative NACTO

david@nacto.org 646.628.3337